Reverse shoulder arthroplasty for proximal humeral fractures: outcomes comparing primary reverse arthroplasty for fracture versus reverse arthroplasty after failed osteosynthesis

Steven F. Shannon, MD Department of Orthopedic Surgery, Mayo Clinic

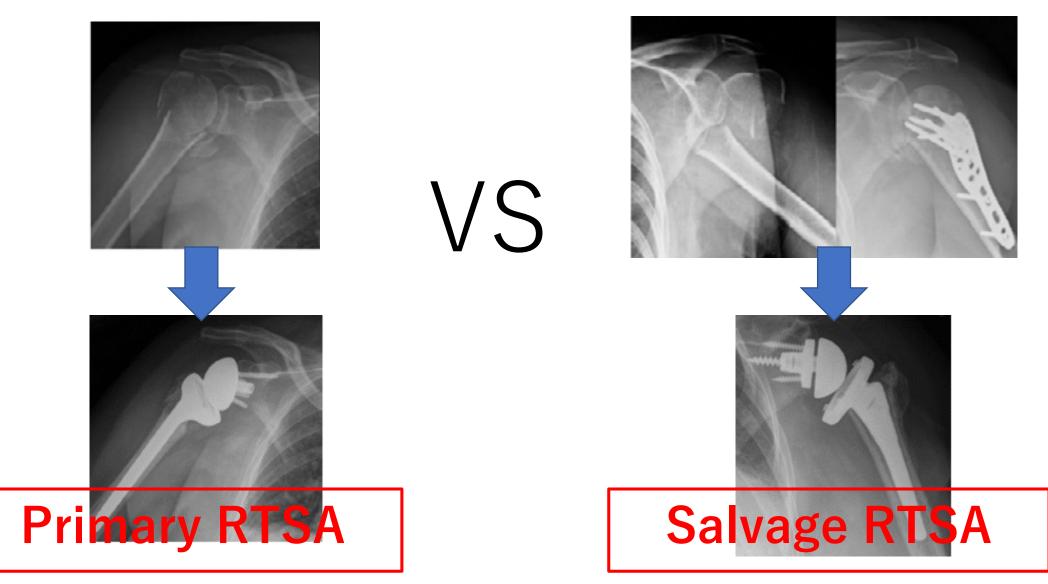
Journal of Shoulder and Elbow Surgery 2016: 25 : 1655-1660

21/3/2017 journal club Koji Akimoto

Background

- \succ Locking plate system \rightarrow \bigcirc improvement in Fx fixation
 - × a relatively high complication rate

 \succ Failed ORIF \rightarrow


(Brunner, J Orthop Trauma, 2009)

- ✓ Osteonecrosis
- ✓ Malunion/Nonunion
- ✓ Posttraumatic OA
- ✓ Humeral head collapse

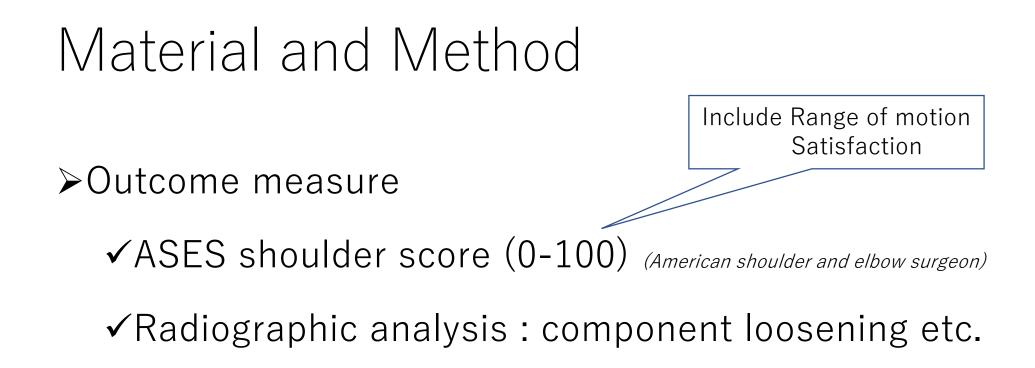
(Orelud, JSES, 2010)

Surgical treatment of proximal humeral fractures(PHFx) in the elderly pose challenges in decision making

Which ? \rightarrow few reports

To evaluated the outcomes of

patients with failed osteosynthesis who undergo salvage RTSA


compared with

patients undergoing primary RTSA

for PHFx

Material and Method

- ➢Retrospective study Between 2003 and 2013
- ► All cases : Neer classification Type3 or 4
 - ✓ acute Primary RTSA 18 cases
 - ✓ Salvage RTSA 26 cases with prior ORIF
- ≻Age: Av. 75 yrs(60-88)
- ≻F/U : Av. 3yrs (2-6)

Statically : unpaired Student T test Fisher exact test Kaplan-Meier survival test log-rank test

Patient demographics

	Salvage RTSA (n=26)	Primary RTSA (n=18)	P value
Side			.74
Right	12	9	
Left	14	9	
Follow-up, y	2(2-6)	3(2-5)	.14
Age, y	70(54-87)	75(60-88)	.13
Gender			.18
Male	3	4	
Female	23	14	
BMI, kg/m²	32.5	31.4	.71
Neer classification			.58
3 part	11	9	
4part	15	⁹ Salvage RT	SA ≒ P

Clinical outcomes Salvage RTSA vs Primary RTSA

	Salvage RTSA (n=26)	Primary RTSA (n=18)	Difference(95% Cl)	P value
ASES	64.6	70.6	5.9(1.69-14)	.211
Active range of motion				
Forward flexion(°)	130	133	3.1(14-29)	.785
External flexion(°)	42	36	5.93(13-25)	.518
Satisfaction	5.2	4.8	0.4(0.5-1.4)	.371
		S	alvage RTSA ≒	Primary RTSA

Clinical outcomes of RTSA with failed ORIF Before RTSA vs After RTSA

	Before salvage RTSA(n=26)	After salvage RTSA(n=26)	Difference(95% CI)	P value
ASES	24.7	63.0	38(33-43)	<.0001
Active range of motion				
Forward flexion(°)	51	133	82(65-96)	<.0001
External flexion(°)	1	42	41.5(27-53)	<.0001
Satisfaction	1.0	5.6	4.6(4-5)	<.0001
			Before RTSA	∖ ≒ After RT

Clinical outcomes of 3 part Fx Salvage RTSA vs Primary RTSA

	Salvage RTSA (n=11)	Primary RTSA (n=9)	Difference(95% Cl)	P value
ASES	62.3	66.6	4.2(6-14)	.373
Active range of motion				
Forward flexion(°)	146	114	31.6(10-63)	.048
External flexion(°)	46	33	12.2(15-39)	.338
Satisfaction	6.2	5	1.2(1-3)	
		Sa	alvage RTSA ≒	Primary RTS/

Clinical outcomes of 4 part Fx Salvage RTSA vs Primary RTSA

	Salvage RTSA (n=15)	Primary RTSA (n=9)	Difference(95% Cl)	P value
ASES	62.5	73.3	10.7(6-28)	.187
Active range of motion				
Forward flexion(°)	127	147	20(12-53)	.189
External flexion(°)	40	38	1.6(21-24)	.872
Satisfaction	5.1	4.5	0.5(0.12-1)	0.095
		Sa	alvage RTSA ≒	Primary RTS

Complication

		Salvage RTSA (n=28)	Primary RTSA (n=16)	P value
	Complication	2	1	.782
Early phase	Dislocation	1	0	.331
	Aseptic loosening	1	0	.331
	Reoperation	0	1	.331
	Excluding : heterotopic ossification		prosthetic joint infection 1.5 years after the index arthroplasty	

Clinical outcome -Salvage vs Primary RTSA-

 \blacktriangleright Acute arthroplasty for PHFx \rightarrow good early outcomes

- ✓Systematic review by Ferrel
 - Forward flexion Av.118°
 - External rotation Av.20°
 - ASES score Av.64.7

(Ferrel, J Orthop Trauma, 2015)

>Only Salvage RTSA \rightarrow few reports

<u>In this case</u> Salvage RTSA ≒ Primary RTSA

Complication -Salvage vs Primary RTSA-

► Reoperation rate : up to 4%

In this case

higher early infection

lower recurrent instability, early loosening

(Cazeneuve, Orthop Traumatol Surg Res, 2011)

(Ferrel, J Orthop Trauma, 2015)

Salvage RTSA : heterotopic ossification, instability Early phase component loosening

Primary RTSA : prosthetic joint infection 1.5 yearsLate phaseafter the index arthroplasty

Limitation

- ✓Retrospective design
- ✓At a single institution and involved several surgeons
- ✓No standardized algorithm for the treatment of the initial PHFx
- ✓Not all patients were treated initially at the institution
- ✓The follow-up time for these patients is relatively short

Conclusion

- ➤Although RTSA after failed ORIF has a higher rate of complications compared with acute RTSA, the revision and reoperation rate as well as clinical outcomes and shoulder function remained comparable.
- Salvage RTSA still has the potential to achieve good outcomes if osteosynthesis fails.